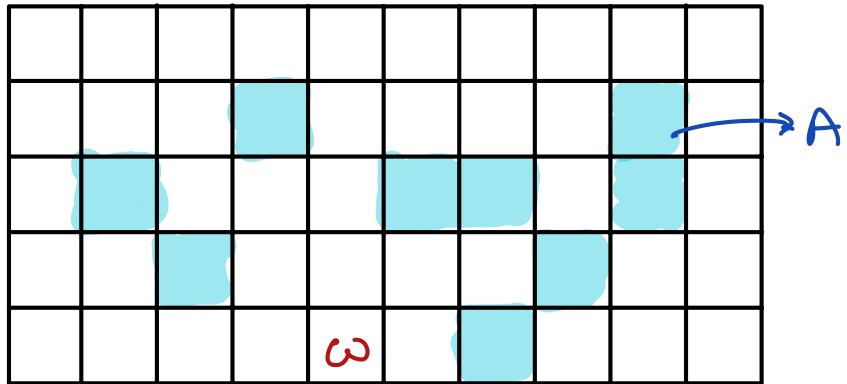


Recap



Probability Space : (Ω, \mathcal{V})

$$v : \Omega \rightarrow [0, 1] , \sum_{\omega \in \Omega} v(\omega) = 1$$

Event : $A \subseteq \Omega$

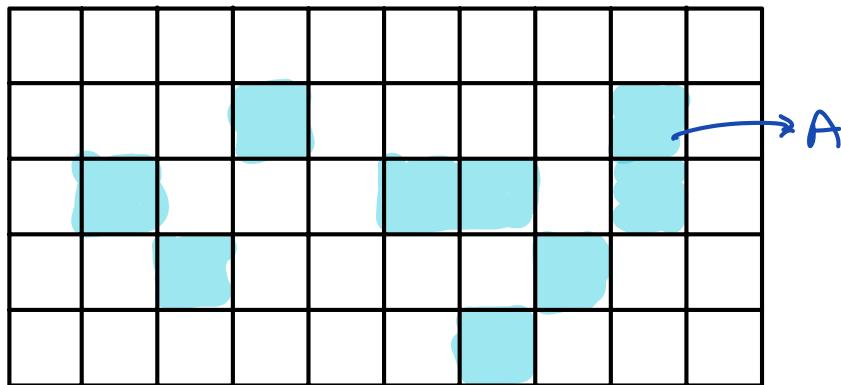
Random Variable : $X : \Omega \rightarrow \mathbb{R}$

Expectation : $E[X] = \sum_{\omega} v(\omega) \cdot X(\omega)$

$$E[X+Y] = E[X] + E[Y]$$

Conditioning

Conditioning on event $A \subseteq \Omega$ \equiv Restricting probability space to A



$$v_A(\omega) = \begin{cases} 0 & \text{if } \omega \notin A \\ \frac{v(\omega)}{P[A]} & \text{if } \omega \in A \end{cases}$$

$$\begin{aligned} P[B|A] &= \sum_{\substack{\omega \in B \\ \omega \in A}} v_A(\omega) \\ &= \frac{P[A \cap B]}{P[A]} \end{aligned}$$

$$\begin{aligned} E[X|A] &= \sum_{\omega} v_A(\omega) X(\omega) \\ &= \sum_{\omega} \frac{v(\omega)}{P(A)} \cdot 1_A(\omega) X(\omega) \\ &= \frac{E[1_A(\omega) \cdot X(\omega)]}{P(A)} \end{aligned}$$

Total Probability and Total Expectation

- For any event $B \subseteq \Omega$

$$P[B] = P[A] \cdot P[B|A] + P[A^c] \cdot P[B|A^c]$$

- For any (real-valued) r.v. X

$$E[X] = P[A] \cdot E[X|A] + P[A^c] \cdot E[X|A^c]$$

- For any partition A_1, \dots, A_k of Ω

$$E[X] = \sum_{i=1}^k P[A_i] \cdot E[X|A_i]$$

Independence

Two events $A, B \subseteq \Omega$ are independent if

$$P[A|B] = P[A] \Leftrightarrow P[A \cap B] = P[A] \cdot P[B] \Leftrightarrow P[B|A] = P[B]$$

Two random variables X, Y on the same (finite) Ω are independent if $\forall x, y \text{ s.t. } P[X=x] > 0, P[Y=y] > 0$

the events $\{X=x\}$ and $\{Y=y\}$ are independent

► If $X, Y : \Omega \rightarrow \mathbb{R}$ are independent, then $E[X \cdot Y] = E[X] \cdot E[Y]$

Proof:

$$\begin{aligned} E[X \cdot Y] &= \sum_{\omega} v(\omega) \cdot X(\omega) Y(\omega) = \sum_{x,y} \left(\sum_{\substack{\omega: X(\omega)=x \\ Y(\omega)=y}} v(\omega) \right) x \cdot y \\ &= \sum_{x,y} P[X=x \wedge Y=y] \cdot x \cdot y \\ &= \sum_{x,y} P[X=x] \cdot P[Y=y] x \cdot y \end{aligned}$$

Ex: Is the converse true?

Independence of multiple events

- $A_1, \dots, A_n \subseteq \Omega$ are mutually independent if

$$\forall S \subseteq \{n\}, \quad P\left[\bigcap_{i \in S} A_i\right] = \prod_{i \in S} P[A_i]$$

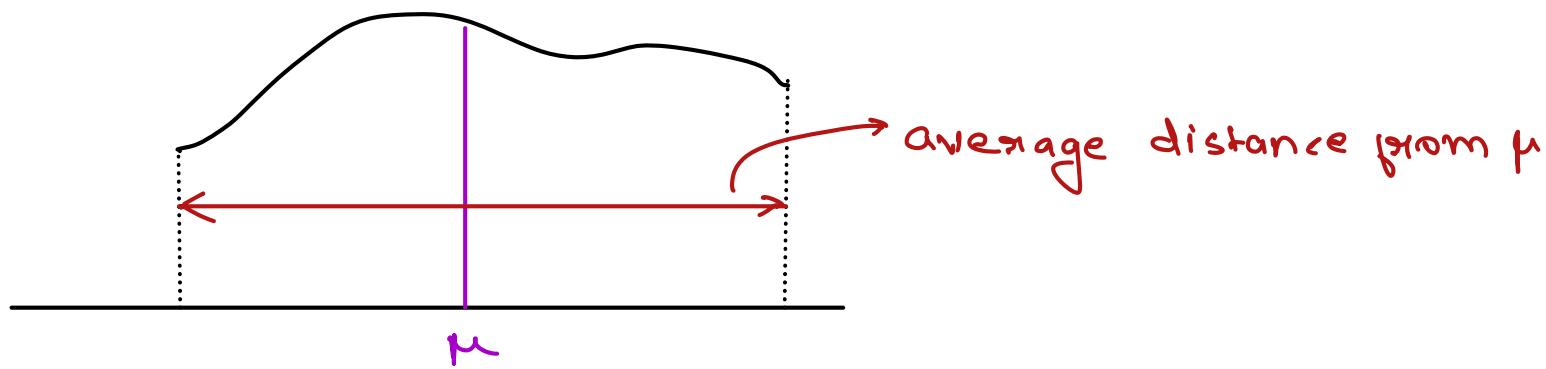
only for $|S| \leq \mathbb{R} \rightarrow$ otherwise independence

- $X_1, \dots, X_n: \Omega \rightarrow \mathbb{R}$ are mutually independent if

$\forall x_1, \dots, x_n$ the events $\{X_1 = x_1\}, \dots, \{X_n = x_n\}$
are mutually independent.

Variance and covariance

- For a random variable $X : \Omega \rightarrow \mathbb{R}$ with $\mathbb{E}[X] = \mu$
 $\text{Var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$



- For two random variables $X_1, X_2 : \Omega \rightarrow \mathbb{R}$, $\mathbb{E}[X_1] = \mu_1$, $\mathbb{E}[X_2] = \mu_2$

$$\text{Cov}[X_1, X_2] = \mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)] = \mathbb{E}[X_1 X_2] - \mu_1 \mu_2$$

Ex: X_1, X_2 are independent $\Rightarrow \text{Cov}[X_1, X_2] = 0$

Dealing with infinite probability spaces (Ω)

Countable Ω : Same definitions

Case with convergence of $\sum_{\omega \in \Omega} \dots$

Uncountable Ω : Needs more care

(after few lectures)

Bernoulli random variables

Bernoulli (p)
$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

$$\Omega = \{0, 1\}$$

$1-p$	p
0	1

$$\mathbb{E}[X] = p$$

$$\begin{aligned} \text{Var}[X] &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}X - (\mathbb{E}[X])^2 \\ &\quad \text{because } X^2 = X \text{ for } X \in \{0, 1\} \\ &= p - p^2 = p(1-p) \end{aligned}$$

Binomial random variables

Binomial (n, p)

$$Z_n = \underbrace{x_1 + \dots + x_n}_{\substack{\text{independent} \\ \text{identical, Bernoulli } |p| \\ (\text{i.i.d.})}}$$

independent
identical, Bernoulli $|p|$
(i.i.d.)

$$\Omega = \{0, 1\}^n$$

$$\mathbb{E}[Z_n] = \sum_i \mathbb{E}[x_i] = n \cdot p = \mu.$$

$$\text{Var}[Z_n] = \mathbb{E}[(\sum x_i - \mu)^2]$$

$$\begin{aligned} &= \mathbb{E}\left[\left(\sum_i (x_i - \mu_i)\right)^2\right] = \sum_i \underbrace{\mathbb{E}[(x_i - \mu_i)^2]}_{= p(1-p)} + \sum_{i \neq j} \underbrace{\mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)]}_{= 0} \\ &= n \cdot p \cdot (1-p) \end{aligned}$$

Ex: $P[Z_n = k] = ?$

Geometric random variables

$\underbrace{Y}_{\downarrow}$ = position of first 1 among $\underbrace{x_1, x_2, x_3, \dots}_{\text{i.i.d. Bernoulli}(p)}$

Geometric(p)

$$\Omega = \{1, 01, 001, 0001, \dots\}$$

$$A = \{x_1 = 0\}$$

$$\begin{aligned} E[Y] &= P(A) \cdot E[Y|A] + P(A^c) \cdot E[Y|A^c] \\ &= p \cdot 1 + (1-p) \cdot (E[Y] + 1) \end{aligned}$$

$$\Rightarrow E[Y] = 1/p$$

Ex: $\text{Var}[Y] =$

Coupon collection

- n types of coupons
- get independent random type at each time step

$T =$ first time we have all n types

$$\mathbb{E}[T] =$$

$$T = X_1 + X_2 + \dots + X_n$$

$X_i =$ time to go from $i-1$ types to i types

$$= \text{Geometric } \left(\frac{n-(i-1)}{n} \right)$$

$$\mathbb{E}[X_i] = \frac{n}{n-i+1}$$

$$\mathbb{E}[T] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1} = n \left(1 + \frac{1}{n} + \dots + \frac{1}{1} \right) \approx C \cdot n \cdot \ln n$$